B-coloring of Tight Graphs
نویسندگان
چکیده
A coloring c of a graph G = (V,E) is a b-coloring if in every color class there is a vertex colored i whose neighborhood intersects every other color classes. The b-chromatic number of G, denoted χb(G), is the greatest integer k such that G admits a b-coloring with k colors. A graph G is tight if it has exactly m(G) vertices of degree m(G)−1, where m(G) is the largest integer m such that G has at least m vertices of degree at least m−1. Determining the b-chromatic number of a tight graph G is NP-hard even for a connected bipartite graph [9]. In this paper we show that it is also NP-hard for a tight chordal graph. We also show that the b-chromatic number of a split graph can be computed is polynomial. Then we define the b-closure and the partial b-closure of a tight graph, and use these concepts to give a characterization of tight graphs whose b-chromatic number is equal to m(G). This characterization is used to develop polynomial time algorithms for deciding whether χb(G) = m(G), for tight graphs that are complement of bipartite graphs, P4-sparse and block graphs. We generalize the concept of pivoted tree introduced by Irving and Manlove [6] and show its relation with the b-chromatic number of tight graphs. Finally, we give an alternative formulation of the Erdös-Faber-Lovász conjecture in terms of b-colorings of tight graphs. Key-words: graph coloring, b-coloring, precoloring extension, tight graphs † Projet Mascotte, I3S (CNRS, UNSA) and INRIA, 2004 route des lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France. [email protected]. Partly supported by ANR Blanc AGAPE. ‡ Dept. of Computer Science, Federal University of Ceará, Fortaleza, CE, Brazil. [email protected] § Projet Mascotte, I3S (CNRS, UNSA) and INRIA, 2004 route des lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France. Leonardo.Sampaio [email protected]. Partly supported by ANR Blanc AGAPE. Partly supported by CAPES The Capes Foundation, Ministry of Education of Brazil. Cx. postal 250, Brası́lia DF 70.040-020, Brazil. ∗ Research supported by the INRIA Equipe Associée EWIN. b-coloration des graphes étriqués Résumé : Une k-coloration c d’un graphe G est une b-coloration si dans toute classe de couleur, il y a un sommet dont le voisinage intersecte toutes les autres classes de couleurs. The nombre b-chromatique d’un graphe est le plus grand entier k tel que G admette une b-coloration avec k couleurs. Un graphe est étriqué s’il a exactement m(G) sommet de degré m(G)−1, avec m(G) le plus grand entier m tel que G ait au moins m sommets de degré au moins m− 1. Calculer le nombre b-chromatique d’un graphe étriqué est NP-dur même pour les graphes connexes bipartis [9]. Dans ce rapport, nous montrons que c’est également NP-difficile pour les graphes étriqués cordaux. Nous montrons également que le nombre b-chromatique d’un graphe split peut être calculé en temps polynomial. Ensuite nous définissons la b-clôture et la b-clôture partielle d’un graphe étriqué. Nous utilisons ces deux concepts pour concevoir des algorithmes en temps polynomial pour décider si χb(G) = m(G) pour les graphes étriqués qui sont bipartis, P4-sparse ou des block-graphes. Nous généralisons également le concept d’arbre pivoté de Irving and Manlove [6] et montrons sa relation avec le nombre b-chromatique des graphes étriqués. Enfin, nous donnons une formulation alternative de la conjecture d’Erdös-Faber-Lovász en termes de b-coloration des graphes étriqués. Mots-clés : coloration de graphe, b-coloration, extension de précoloration, graphes étriqués b-coloring of tight graphs 3
منابع مشابه
On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs
For a coloring $c$ of a graph $G$, the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively $sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$, where the summations are taken over all edges $abin E(G)$. The edge-difference chromatic sum, denoted by $sum D(G)$, and the edge-sum chromatic sum, denoted by $sum S(G)$, a...
متن کاملTotal coloring for generalized Sierpinski graphs
A total coloring of a graph is an assignment of colors to all the elements of the graph in such a way that no two adjacent or incident elements receive the same color. In this paper, we prove the tight bound of the Behzad and Vizing conjecture on total coloring for the generalized Sierpiński graphs of cycle graphs and hypercube graphs. We give a total coloring for the WK-recursive topology, whi...
متن کامل-λ coloring of graphs and Conjecture Δ ^ 2
For a given graph G, the square of G, denoted by G2, is a graph with the vertex set V(G) such that two vertices are adjacent if and only if the distance of these vertices in G is at most two. A graph G is called squared if there exists some graph H such that G= H2. A function f:V(G) {0,1,2…, k} is called a coloring of G if for every pair of vertices x,yV(G) with d(x,y)=1 we have |f(x)-f(y)|2 an...
متن کاملAcyclic edge coloring of subcubic graphs
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a(G). From a result of Burnstein it follows that all subcubic graphs are acyclically edge colorable using 5 colors. This result is tight since there are...
متن کاملBounded Max-colorings of Graphs
In a bounded max-coloring of a vertex/edge weighted graph, each color class is of cardinality at most b and of weight equal to the weight of the heaviest vertex/edge in this class. The bounded max-vertex/edge-coloring problems ask for such a coloring minimizing the sum of all color classes’ weights. In this paper we present complexity results and approximation algorithms for those problems on g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 160 شماره
صفحات -
تاریخ انتشار 2012